
Nightmare Dreamer: Dreaming About Unsafe States And Planning
Ahead

Oluwatosin Oseni, Shengjie Wang, Jun Zhu and Micah Corah

Abstract

Model-based Safe RL algorithm that

proactively “dreams” about unsafe

future states and plans preventive

actions. We adopt a bi-actor

architecture with predictive planning

that switches between control and

safety policies based on anticipated

violations.

Approach

Main components of Nightmare

Dreamer approach for Safe-RL:

World Model Learning: Learn

environment dynamics, including

safety violations for predictive

planning.

Predictive Planning: Uses world

model rollouts to anticipate violations.

Bi-Actor Architecture: Separate

policies for reward maximization

(Control) and safety constraints

(Safe) (switching between policies

based on potential safety violation)

▶ Control policy: Optimizes

rewards

▶ Safe policy: Optimizes constraints

while imitating control actions

through discriminator-based

regularization. The safe policy

fools a discriminator to mimic

control actions.

World Model Learning

Goal: Learn environment dynamics

including safety violations

Key Components:

▶ Recurrent Model: Temporal

dependencies

▶ Cost/Reward Model: Predicts

safety violations an task performance

respectively

▶ Transition Model: State dynamics

Why Important: Enables predicting

future safety violations before they happen

Model Loss Function:

L(ϵ) .
=

T∑
t=1

− αcln(pϵ(ct|ht, zt))
cost log loss

− αrln(pϵ(rt|ht, zt))
reward log loss

− ln(pϵ(ot|ht, zt))
reconstruction loss

− ln(pϵ(yt|ht, zt))
discount log loss

.

+KL [qϵ(zt|ht, ot) || sg(pϵ(zt|ht)]
representation loss

Algorithm for Safe Action Selection

The blue gamepad signifies the action from

the Controller, while the red gamepad refers

to an action from the Safe Actor.

Algorithm Planning Ahead of Risks for Safe Action Selection

Input: Current state st, safety budget bs
Output: Action at to execute
Compute current cost Ct(ht, zt, ot) based on current observation
Initialize Csum ← Ct(ht, zt, sot)
for i← 1 to H do

Predict next latent state using learned dynamics model Esti-
mate cost Ct+i for predicted state Csum ← Csum + Ct+i

end
if Csum > bs then

at ∼ πρ(a|st) ; // Sample action from safe policy

else
at ∼ πϕ(a|st) ; // Sample action from Control policy

end
return at

Safe and Control Policy Learning

▶ Control Policy: We train a Control Policy using rollouts from World Model

▶ Safe Policy: We train the Multi-Objective loss function that minimizes Cost while

maximising Reward by Imitating the Control Policy Actions

L(ρ) .
=

H−1∑
t=1

(λpC
λ
t

target cost value

−D(at, st)
control policy behaviour imitation

−ηH [πϕ(at|st)]
entropy regularizer

).

Solving the Multi-Objective Optimization using the classic Primal-Dual Method

π∗ = argmax
πθ

JR(πθ) s.t JC(πθ) ≤ b

Multi-Objective Optimization Formulation

min
πϕ

max
λp≥0

Jtask(πϕ)− λp(Jconstraint(πρ)− b

Primal-dual via the Lagrangian Method

Experimental Results

Experiments on Circle 1 environment and

Safety-Gymnasium agents

(a) Circle 1 (b) Point (c) Car

Circle 1 Performance Comparison with

Benchmarks

(a) Point, Circle1, Reward (b) Car, Circle1, Reward

(c) Point, Circle1, Cost (d) Car, Circle1, Cost

Takeaways:

▶ Competitive control performance

compared with other baseline methods

▶ Near Zero Constraint violation

▶ 20x Comparable sample efficiency

Future Work

▶ Beating other Safe RL Benchmarks

Environments and Agents.

▶ Comparison to other Model-Based Safe

RL algorithms

{oluwatosin oseni, micah.corah}@mines.edu

