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Abstract

Model-based Safe RL algorithm that
proactively “dreams” about unsafe
future states and plans preventive
actions. We adopt a bi-actor
architecture with predictive planning
that switches between control and
safety policies based on anticipated
violations.

Approach

Main components of Nightmare
Dreamer approach for Safe-RL:

World Model Learning: Learn
environment dynamics, including
safety violations for predictive
planning.

Predictive Planning: Uses world
model rollouts to anticipate violations.

Bi-Actor Architecture: Separate

policies for reward maximization

(Control) and safety constraints

(Safe) (switching between policies

based on potential safety violation)

» Control policy: Optimizes
rewards

» Safe policy: Optimizes constraints
while imitating control actions
through discriminator-based
regularization. The safe policy
fools a discriminator to mimic
control actions.
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World Model Learning

Goal: Learn environment dynamics

including safety violations
Key Components:

» Recurrent Model: Temporal

dependencies

» Cost/Reward Model: Predicts
safety violations an task performance

respectively

» Transition Model: State dynamics

Why Important: Enables predicting
future safety violations before they happen

Algorithm for Safe Action Selection

The blue gamepad signifies the action from
the Controller, while the red gamepad refers

to an action from the Safe Actor.

Model Loss Function:
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Algorithm Planning Ahead of Risks for Safe Action Selection

Input: Current state s¢, safety budget by

Output: Action a; to execute

Compute current cost Cy(hy, z¢,0¢) based on current observation
Initialize Csym < Ci(he, 2¢, S0¢)

for 1< 1 to H do

Predict next latent state using learned dynamics model Esti-
mate cost Cyy; for predicted state Cgym < Csum + Chai

end
if Coum > bs then
‘ ag ~ 7Tp(a|51t) ;
else
|~ mp(alsy)
end
return a;

// Sample action from safe policy

// Sample action from Control policy

Safe and Control Policy Learning

» Control Policy: We train a Control Policy using rollouts from World Model

» Safe Policy: We train the Multi-Objective loss function that minimizes Cost while
maximising Reward by Imitating the Control Policy Actions
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Solving the Multi-Objective Optimization using the classic Primal-Dual Method

T, = argmax J(mg) st J(m) < b

o

Multi-Objective Optimization Formulation

minmax Jtask(ﬂ-gb) — )\p<Jconstraint(7Tp) —b
» Ap=>0

Primal-dual via the Lagrangian Method

Experimental Results

Experiments on Circle 1 environment and

Safety-Gymnasium agents
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Circle 1 Performance Comparison with

Benchmarks
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Takeaways:
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» Competitive control performance
compared with other baseline methods

» Near Zero Constraint violation

» 20x Comparable sample efficiency

Future Work

» Beating other Safe RL Benchmarks
Environments and Agents.

» Comparison to other Model-Based Safe

RL algorithms




